\qquad

Maximization, Minimization, and OLS Homework

Math 1220

Challenge 1. C\&G Imports imports two brands of white wine, one from Germany and the other from Italy. The German wine costs $\$ 4 /$ bottle, and the Italian wine costs $\$ 3 /$ bottle. It has been estimated that if the German wine is sold at p dollars/bottle and the Italian wine is sold for q dollars/bottle, then

$$
\begin{gathered}
2000-150 p+100 q \text { bottles of German wine and } \\
100+80 p-120 q \text { bottles of Italian wine }
\end{gathered}
$$

will be sold each week. Determine the unit price for each brand that will allow C\&G to realize the largest possible weekly profit.

Challenge 2. Remember sigma notation, which is an abbreviation for a sum,

$$
\sum_{i=0}^{n} i=0+1+2+\cdots+n
$$

Compute the following sums
(a) $\sum_{i=1}^{7} i$
(b) $\sum_{i=2}^{8} i$
(c) $\sum_{i=2}^{5}(i-1)^{2}$

Challenge 3. Let us show the normal equations for Ordinary Least Squares actually give us a "best-fit" line minimizing the squares of the "residuals" between n points, say $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ and the line.
(a) What is the length of a "residual" between a point $\left(x_{0}, y_{0}\right)$ and a line $y=m x+b$?

(b) Let $y=f(x)=m x+b$ be our line and let $d(m, b)$ be the sum of the squares of the n residuals between our line and our data points. Write a formula for $d(m, b)$ in sigma notation.
(c) In order to find our line of best fit, we must minimize $d(m, b)$. Compute the first-order partial derivatives of d and set them equal to zero.
(d) Now, we need to show that our critical point (m, b) is a relative minimum. Compute the second partial derivatives $d_{m m}, d_{m b}$, and $d_{b b}$ and apply the second derivative test. To show $D(m, b)>0$, you can use the famous Cauchy inequality

$$
\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) \geq\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \text { for all } a_{i} \geq 0, b_{i} \geq 0
$$

