\qquad

Worksheet. Lots of Derivatives!

Math 1210

Challenge 1. Air is being pumped into a spherical weather balloon. At any time t, the volume of the balloon is $V(t)$ and its radius is $r(t)$. Recall that, for a sphere, $V=\frac{4}{3} \pi r^{3}$.
(a) What do the derivatives $\frac{d V}{d r}$ and $\frac{d V}{d t}$ represent?
(b) Express $\frac{d V}{d t}$ in terms of $\frac{d r}{d t}$.

Challenge 2. Write $|x|=\sqrt{x^{2}}$ and use the chain rule to show

$$
\frac{d}{d x}|x|=\frac{x}{|x|}
$$

Also recall how to get the answer using the limit definition of the derivative.

Challenge 3. The cost function for production of a commodity is

$$
C(x)=339+25 x-0.09 x^{2}+0.0004 x^{3}
$$

(a) Find and interpret $C^{\prime}(100)$
(b) Compare $C^{\prime}(100)$ with the cost of producing the 101st item, that is $C(101)-C(100)$.

Challenge 4. Consider a tank holding 5000 gallons of water which drains from the bottom and is completely empty after 40 minutes of draining. Torricelli's Law gives the volume V of water remaining in the tank after t minutes as

$$
V(t)=5000\left(1-\frac{t}{40}\right)^{2}, \quad 0 \leq t \leq 40
$$

Find the rate at which water is draining from the tank after (a) 5 minutes, (b) 10 minutes, (c) 20 minutes, and (d) 40 minutes. At what time is the water flowing out the fastest? The slowest?

Challenge 5. A company makes computer chips from square wafers of silicon. It wants to keep the side length of a wafer very close to 15 mm and it wants to know how the area $A(x)$ of a wafer changes when the side length x changes. Find $A^{\prime}(15)$ and explain its meaning.

