Keeping Special Points and Properties of Functions Straight

Math 1210

Type	Form	Relations	Example Sentence
Critical Point	($a, f(a)$)	($a, f(a))$ is on the graph of f, so a is in the domain of f. $f^{\prime}(a)=0, f^{\prime}(a)$ does not exist, or... a is called a critical number and $f(a)$ is called a critical value.	The critical points of $f(x)=$ $x^{2}-x+2$ are $(0,2)$ and $(1,2)$.
Increasing/decreasing function	$f(x)$ is increasing/decreasing on (a, b).	If $f(x)$ is differentiable on (a, b), then - $f^{\prime}(x)>0$ on $(a, b) \Longrightarrow f$ is increasing on (a, b). - $f^{\prime}(x)<0$ on $(a, b) \Longrightarrow f$ is decreasing on (a, b). - $f^{\prime}(x)=0$ on $(a, b) \Longrightarrow f$ is constant on (a, b).	$f(x)=3 x^{4}-4 x^{3}-12 x^{2}+$ 5 is increasing on $(-\infty, 0)$ and $(2, \infty)$ and decreasing on $(0,2)$.
Relative extrema	A function has a relative extrema at $x=c$. The relative extrema		

