Keeping Special Points and Properties of Functions Straight

Math 1210

Type	Form	Relations	Example Sentence
Critical Point	(a, f(a))	(a, f(a)) is on the graph of f , so a is in the domain of f . f'(a) = 0, f'(a) does not exist, or a is called a critical number and $f(a)$ is called a critical value.	The critical points of $f(x) = x^2 - x + 2$ are $(0, 2)$ and $(1, 2)$.
Increasing/decreasing function	f(x) is increas- ing/decreasing on (a, b).	 If f(x) is differentiable on (a, b), then f'(x) > 0 on (a, b) ⇒ f is increasing on (a, b). f'(x) < 0 on (a, b) ⇒ f is decreasing on (a, b). f'(x) = 0 on (a, b) ⇒ f is constant on (a, b). 	$f(x) = 3x^4 - 4x^3 - 12x^2 +$ 5 is increasing on $(-\infty, 0)$ and $(2, \infty)$ and decreasing on $(0, 2)$.
Relative extrema	A function has a rela- tive extrema at $x = c$. The relative extrema		