(More Challenging) Related Rates Practice Problems

Math 1210

November 7, 2018

Problem 1

Water flows from a tank of constant cross-sectional area $50 \mathrm{ft}^{2}$ through an orifice of constant cross-sectional area $1.4 \mathrm{ft}^{2}$ located at the bottom of the tank (see the figure). Initially the height of the water in the tank was 20 ft , and its height t sec later is given by the equation

$$
2 \sqrt{h}+\frac{1}{25} t-2 \sqrt{20}=0 \quad(0 \leq t \leq 50 \sqrt{20})
$$

How fast was the height of the water decreasing when its height was 8 ft ?

Problem 2

A water trough is 10 m long and a cross-section has the shape of an icosceles trapezoid that is 30 cm wide at the bottom, 80 cm wide at the top, and has height 50 cm . If the trough is being
filled with water at the rate of $0.2 \mathrm{~m}^{3} / \mathrm{min}$, how fast is the water level rising when the water is 30 cm deep.

Problem 3

If two resistors with resistances R_{1} and R_{2} are connected in parallel, as in the figure, then the total resistance R, measured in ohms (Ω), is given by

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

If R_{1} and R_{2} are increasing at rates $0.3 \Omega / \mathrm{s}$ and $0.2 \Omega / \mathrm{s}$, respectively, how fast is R changing when $R_{1}=80 \Omega$ and $R_{2}=100 \Omega$?

Problem 4

Boyle's Law states that when a sample of gas is compressed at a constant temperature, the pressure P and volume V satisfy the equation $P V=C$, where C is a constant. Suppose that at
a certain instant the volume is $600 \mathrm{~cm}^{3}$, the pressure is $150 \mathrm{kPa} / \mathrm{min}$. At what rate is the volume decreasing at this instant?

