Curve Sketching Practice Problems

Math 1210

November 7, 2018

Problem 1

Let

$$
f(x)=2 x^{3}+3 x^{2}-12 x
$$

Sketch the graph of f. Clearly label any x and y intercepts, horizontal asymptotes, vertical asymptotes, relative max pairs, relative min pairs, and inflection points.

Problem 2

Suppose f is a function with all of the following properties:
(a) f has domain $=(-\infty, 2) \cup(2, \infty)$.
(b) f has x -intercepts $-3,4,7$, and $9 . f$ has y-intercept 6 .
(c) $\lim _{x \rightarrow \infty} f(x)=\infty$ and $\lim _{x \rightarrow-\infty} f(x)=-5$. Also, f has a vertical asymptote $x=2 . f$ has the following behavior near this vertical asymptote:

$$
\lim _{x \rightarrow 2^{+}} f(x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow 2^{-}} f(x)=\infty
$$

(d) f is increasing on $(-\infty, 2),(2,5)$, and $(8, \infty) . f$ is decreasing on $(5,8)$
(e) f has a relative max pair of $(5,3)$ and a relative min pair of $(8,-1)$.
(f) f is concave up on $(-\infty, 2)$ and $(6, \infty) . f$ is concave down on $(2,6)$.
(g) f has an inflection point $(6,1)$.

Sketch a possible graph of f. In other words, sketch the graph of a single function which has all of the properties listed above. Clearly label any x and y intercepts, horizontal asymptotes, vertical asymptotes, relative max pairs, relative min pairs, and inflection points.

Problem 3

Let

$$
f(x)=\frac{x^{2}-8 x-9}{x(x+1)}
$$

Sketch the graph of f. Clearly label any x and y intercepts, horizontal asymptotes, vertical asymptotes, relative max pairs, relative min pairs, and inflection points.

