MATH 1210

DERIVATIVE WORKSHEET

Limit Definition of the Derivative. Let f be a function and x be a real number. Then the derivative of f at x, denoted $f^{\prime}(x)$ or $\frac{d}{d x}[f(x)]$, is defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { provided this limit exists. }
$$

If the above limit exists, we say that f is differentiable at x, otherwise we say that f is not differentiable at x.
Geometric Interpretation of the Derivative. If f is differentiable at x, then $f^{\prime}(x)$ is the slope of the line tangent to the graph of f at the point $(x, f(x))$.
Rate of Change Interpretation of the Derivative. If f is differentiable at x, then $f^{\prime}(x)$ is the instantaneous rate of change of f with respect to x.

Examples.
(1) If $p(t)$ is position at time t, then $p^{\prime}(t)$ is instantaneous velocity at time t.
(2) If $v(t)$ is velocity at time t, then $v^{\prime}(t)$ is instantaneous acceleration at time t.
(3) If $C(x)$ is the cost of producing x goods, then $C^{\prime}(x)$ is marginal cost.

Differentiation Rules.

(1) Let $f(x)=c$ be a constant function. Then, $f^{\prime}(x)=0$.
(2) Let f be differentiable at x and let c be a constant. Then

$$
\frac{d}{d x}[c f(x)]=c \frac{d}{d x}[f(x)]
$$

(3) (Power Rule) Let n be any real number. Then,

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

(4) (Sum Rule) Let f and g be two functions such that f and g are both differentiable at x. Then,

$$
(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)
$$

(5) (Product Rule) Let f and g be two functions such that f and g are both differentiable at x. Then

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

(6) (Quotient Rule) Let f and g be two functions such that $g(x) \neq 0$ and f and g are both differentiable at x. Then,

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

(7) (Chain Rule) Let f and g be two functions such that f is differentiable at x and g is differentiable at $f(x)$. Then,

$$
(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)
$$

(8) (Generalized Power rule) Let f be differentiable at x and let n be a real number. Then

$$
\frac{d}{d x}[f(x)]^{n}=n[f(x)]^{n-1} f^{\prime}(x)
$$

Theorem 0.1. Let f be a function. If f is differentiable at x, then f is continuous at x.
An equivalent way to say the above theorem is that if f is not continuous at x, then f is not differentiable at x. This is the contrapositive of the theorem 0.1.
Warning: The converse of theorem 0.1 is not true. In other words, f being continuous at x DOES NOT imply that f is differentiable at x. Here is an example illustrating that:
Example. Let $f(x)=|x|$. Then f is continuous at 0 , but not differentiable at 0 .

Practice Problems.

(1) In each of the following problems calculate $f^{\prime}(x)$.
(a) $f(x)=(x+1)^{7}+x^{2}+3215$
(b) $f(x)=\left(x^{2}+\pi\right) \sqrt{3 x^{2}+8}$
(c) $f(x)=\left(-6 x^{8}+(2 x+1)^{4 / 3}+1\right)^{2 / 7}$
(d) $f(x)=\frac{x^{2}}{\sqrt{7 x^{4}+x^{2}+1}}$
(e) $f(x)=\frac{\left(20-x^{7}+x\right)^{2}}{1-x}$
(2) Suppose $f(4)=-27$ and $f^{\prime}(4)=9$. Let $h(x)=f\left(x^{3}+x-6\right)$. Calculate $h^{\prime}(2)$.
(3) Find an equation of the line tangent to $f(x)=3 x^{7 / 3}+x$ at $x=8$.
(4) Let $f(x)=11 \sqrt{x}$. Use the limit definition of the derivative to calculate $f^{\prime}(x)$.
(5) (Challenging) Let $g(x)=x^{2 / 3}+4$. Use the limit definition of the derivative to calculate $g^{\prime}(x)$. (Note: this problem is difficult, and would not appear on an exam)
(6) Let $h(x)=x^{3}$. Use the limit definition of the derivative to calculate $h^{\prime}(x)$.

