MATH 1210, SECTION 011 COMMON MISTAKES WITH LIMITS

Compute the following limits or write DNE if the limit does not exist.
(a) $\lim _{x \rightarrow-7} \frac{x^{2}+12 x+35}{x+7}$
(b) $\lim _{x \rightarrow 0} \frac{x^{2}+x}{x+10}$

Here is how to CORRECTLY write the answer to these questions:
(a) Solution:

$$
\begin{aligned}
\lim _{x \rightarrow-7} \frac{x^{2}+12 x+35}{x+7} & =\lim _{x \rightarrow-7} \frac{(x+5)(x+7)}{x+7} \\
& =\lim _{x \rightarrow-7} x+5 \\
& =-7+5 \\
& =-2
\end{aligned}
$$

(b) Solution:

$$
\lim _{x \rightarrow 0} \frac{x^{2}+x}{x+10}=\frac{0^{2}+0}{0+10}=\frac{0}{10}=0
$$

Here is a list of common ways to INCORRECTLY answer these question:
(1) Scribbling scratch work on the side and writing final answer without showing any logical steps.
(2) Failure to use limit signs.

Question (a) example solution:

$$
\begin{aligned}
\lim _{x \rightarrow-7} \frac{x^{2}+12 x+35}{x+7} & =\frac{(x+5)(x+7)}{x+7} \\
& =x+5 \\
& =-2
\end{aligned}
$$

(3) Failure to write the expression after the limit sign.

Question (a) example solution:

$$
\begin{aligned}
\lim _{x \rightarrow-7} \frac{x^{2}+12 x+35}{x+7} & =\lim _{x \rightarrow-7} \frac{(x+5)(x+7)}{x+7} \\
& =\lim _{x \rightarrow-7} x+5 \\
\lim _{x \rightarrow-7} & =-2
\end{aligned}
$$

The last equality is nonsensical. The limit sign with no expression next to it is meaningless.

(4) Failure to use equalities.

Question (a) example solution:

$$
\begin{aligned}
\lim _{x \rightarrow-7} \frac{x^{2}+12 x+35}{x+7} & \lim _{x \rightarrow-7} \frac{(x+5)(x+7)}{x+7} \\
& \lim _{x \rightarrow-7} x+5 \\
& -7+5
\end{aligned}
$$

(5) Using arrows instead of equalities.

Question (a) example solution:

$$
\begin{aligned}
\lim _{x \rightarrow-7} \frac{x^{2}+12 x+35}{x+7} & \Longrightarrow \lim _{x \rightarrow-7} \frac{(x+5)(x+7)}{x+7} \\
& \Longrightarrow \lim _{x \rightarrow-7} x+5 \\
& \Longrightarrow-7+5 \\
& \Longrightarrow-2
\end{aligned}
$$

In mathematics, if P and Q are statements, then $P \Longrightarrow Q$ means P implies Q. It does not make sense to say

$$
\lim _{x \rightarrow-7} \frac{x^{2}+12 x+35}{x+7} \Longrightarrow \lim _{x \rightarrow-7} \frac{(x+5)(x+7)}{x+7}
$$

because the things on the left and right of the arrows are not statements, they are numbers. An example of an appropriate time to use an arrow is the following:

$$
x+1=6 \Longrightarrow x=5
$$

This time the arrow makes sense because $x+1=6$ and $x=5$ are both statements. $x+1=6$ is the statement " x plus one is equal to 6 " and $x=5$ is the statement " x is equal to 5 ".

(6) Misplaced equal signs.

Question (a) example solution:

$$
\begin{aligned}
\lim _{x \rightarrow-7}=\frac{x^{2}+12 x+35}{x+7} & \lim _{x \rightarrow-7}=\frac{(x+5)(x+7)}{x+7} \\
& \lim _{x \rightarrow-7}=x+5 \\
& =-7+5 \\
& =-2
\end{aligned}
$$

The equal sign should always go before the limit sign, not between the limit sign and the expression.
(7) Setting limit equal to $\frac{0}{0}$.

Question (a) example solution:

$$
\lim _{x \rightarrow-7} \frac{x^{2}+12 x+35}{x+7}=\frac{(-7)^{2}+12(-7)+35}{-7+7}=\frac{0}{0}
$$

The limit of a function either does not exist or is a number. It does not make sense to say that the limit of a function is equal to $\frac{0}{0}$. Remember if you plug in and get $\frac{0}{0}$ it means that more work is required. You must perform algebraic operations to reduce the expression and compute the limit or determine it does not exist.
(8) Getting $\frac{0}{a}$ where a is some non-zero real number and determining that the limit DNE.

Question (b) example solution:

$$
\lim _{x \rightarrow 0} \frac{x^{2}+x}{x+10}=\frac{0^{2}+0}{0+10}=\frac{0}{10}=D N E
$$

If a is a non-zero real number, then $\frac{0}{a}=0$.

