\qquad

Notesheet. Section 9.4: Euler's Method

Math 1220

We cannot solve every 1st order differential equation of the form

$$
y^{\prime}=F(x, y)
$$

However, given a specific point, we know the slope of the tangent line of the solution $y(x)$ passing through any given point $\left(x_{0}, y_{0}\right)$.

Using this information, we can approximate solutions to the IVP

$$
y^{\prime}=F(x, y), y\left(x_{0}\right)=y_{0}
$$

Challenge 1. Approximate the value of $y(4)$ where $y(x)$ is the solution to the IVP

$$
y^{\prime}=x-y, y(0)=1
$$

Theorem 2 (Euler's Method). Given a first order IV P of the form

$$
y^{\prime}=F(x, y), y\left(x_{0}\right)=y_{0}
$$

we can approximate $y(b)$ in n steps by
(i) Finding the step size $h=\frac{b-x_{0}}{n}$
(ii) Determining the x-values $x_{i}=x_{i-1}+h$ for $1 \leq i \leq n$.
(iii) Determining the y-values

$$
\left\{\begin{array}{l}
y_{1}= \\
y_{2}= \\
\vdots \\
y_{i}=
\end{array}\right.
$$

Challenge 3. Use Euler's method with $n=1, n=2$, and $n=4$ to obtain an approximation of the solution of the IVP

$$
y^{\prime}=x y, y(1)=2
$$

when $x=5$. Which approximation is the most accurate?

