\qquad

Notesheet. Section 9.3: Applications of Separable Differential Equations

Math 1220

Challenge 1. Suppose a country's population $P(t)$ at time t is modeled by

$$
\frac{d P}{d t}=2 P+10
$$

Find an expression for $P(t)$ if $P(0)=1,000,000$.

Challenge 2. Suppose that the population $Q(t)$ of fruit flies in a controlled environment is increasing by the rule

$$
\frac{d Q}{d t}=k Q(500-Q)
$$

If the initial population is 10 and it grows to 100 after 2 days, find the population after 10 days.

Challenge 3. Solve the IVP

$$
\frac{d x}{d t}=k(L-x), x(0)=x_{0}
$$

where k, L, x_{0} are constant and $x=x(t)$ is a function in t.

Challenge 4. A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that contains 0.03 kg of salt per liter of water enters the tank at a rate of $25 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt remains in the tank after half an hour?

