Notesheet. Section 8.7+8.8: Double Integrals + Geometric Applications

Math 1220

Definition 1. The double integral of f(x, y) over a region R is denoted by

$$\iint_R f(x,y) \ dA =$$

and, if $f(x, y) \ge 0$ over R, then

$$\iint_R f(x,y) \ dA =$$

Remark 2. (a) In practice, double integrals are evaluated using suitable iterated integrals.

(b) A consequence of our definition is that, for a region R, $\iint_R 1 \, dA$ numerically gives

Theorem 3. If R is a rectangular region defined by $a \le x \le b$ and $c \le y \le d$, then

$$\iint_R f(x,y) \ dA =$$

Challenge 4. Evaluate the double integral $\iint_R 2xy \ dA$ where R is the region defined by the inequalities $0 \le x \le 1$ and $0 \le y \le 1$.

Theorem 5. (a) Suppose $g_1(x)$ and $g_2(x)$ are continuous functions on [a, b] and the region R is defined by $R = \{(x, y) \mid g_1(x) \le y \le g_2(x); a \le x \le b\}$. Then,

$$\iint_R f(x,y) \ dA =$$

(b) Suppose $h_1(y)$ and $h_2(y)$ are continuous functions on [c, d] and the region R is defined by $R = \{(x, y) \mid h_1(y) \le x \le h_2(y); c \le y \le d\}$. Then,

$$\iint_R f(x,y) \ dA =$$

Challenge 6. Let R be the region bounded by x = -y and x = y for $0 \le y \le 1$. Evaluate

$$\iint_R 2xy \ dA$$

Challenge 7. Let R be the region bounded by $y = x^2$ and y = 4. Evaluate

$$\iint_R y \ dA$$