\qquad

Notesheet. Section 8.7+8.8: Double Integrals + Geometric Applications

Math 1220

Definition 1. The double integral of $f(x, y)$ over a region R is denoted by

$$
\iint_{R} f(x, y) d A=
$$

and, if $f(x, y) \geq 0$ over R, then

$$
\iint_{R} f(x, y) d A=
$$

Remark 2. (a) In practice, double integrals are evaluated using suitable iterated integrals.
(b) A consequence of our definition is that, for a region $R, \iint_{R} 1 d A$ numerically gives

Theorem 3. If R is a rectangular region defined by $a \leq x \leq b$ and $c \leq y \leq d$, then

$$
\iint_{R} f(x, y) d A=
$$

Challenge 4. Evaluate the double integral $\iint_{R} 2 x y d A$ where R is the region defined by the inequalities $0 \leq x \leq 1$ and $0 \leq y \leq 1$.

Theorem 5. (a) Suppose $g_{1}(x)$ and $g_{2}(x)$ are continuous functions on $[a, b]$ and the region R is defined by $R=\left\{(x, y) \mid g_{1}(x) \leq y \leq g_{2}(x) ; a \leq x \leq b\right\}$. Then,

$$
\iint_{R} f(x, y) d A=
$$

(b) Suppose $h_{1}(y)$ and $h_{2}(y)$ are continuous functions on $[c, d]$ and the region R is defined by $R=\left\{(x, y) \mid h_{1}(y) \leq x \leq h_{2}(y) ; c \leq y \leq d\right\}$. Then,

$$
\iint_{R} f(x, y) d A=
$$

Challenge 6. Let R be the region bounded by $x=-y$ and $x=y$ for $0 \leq y \leq 1$. Evaluate

$$
\iint_{R} 2 x y d A
$$

Challenge 7. Let R be the region bounded by $y=x^{2}$ and $y=4$. Evaluate

$$
\iint_{R} y d A
$$

