\qquad

Notesheet. Section 8.4+8.7: The Method of Least Squares + Double Integrals

Math 1220

Definition 1. Given n data points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, a scatter diagram is

Definition 2. The principle of least squares states that the straight line L that fits n data points best is

The line L obtained in this manner is called the least-squares line, or regression line.
Theorem 3. Given n data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, then the least squares (regression) line for the data is given by the linear equation

$$
y=f(x)=m x+b
$$

where the constants m and b satisfy the equations

You will see why this is true in homework.

Challenge 4. The following data consists of the quiz grades for five students

Student	Quiz 1 Grade	Quiz 2 grade
1	$x_{1}=1$	$y_{1}=1$
2	$x_{2}=2$	$y_{2}=3$
3	$x_{3}=3$	$y_{3}=4$
4	$x_{4}=4$	$y_{4}=3$
5	$x_{5}=5$	$y_{5}=6$

Challenge 5. Evaluate the following integrals by integrating with respect to the appropriate variable and treating the other variable as a constant.
(a) $\int_{0}^{1} x y^{2} d x$
(b) $\int_{0}^{x}(x+y) d y$
(c) $\int_{1}^{2} \frac{x}{y^{2}} e^{x / y} d y$

Challenge 6. Now, evaluate the interated integrals by doing the inside integral and then the outside integral.
(a) $\int_{0}^{1} \int_{0}^{1} x y^{2} d x d y$
(b) $\int_{0}^{1} \int_{0}^{x}(x+y) d y d x$
(c) $\int_{0}^{x} \int_{0}^{1}(x+y) d x d y$

