Name:__

Notesheet. Section 8.3 Part 2: Maxima and Minima of Function of Several Variables

Math 1220

Challenge 1. Consider the function $f(x, y) = (1 - x^2) \sin(y)$. Compute the following (a) $f_x(0, \frac{\pi}{2}), f_y(0, \frac{\pi}{2})$ and $f_x(1, 0), f_y(1, 0)$.

(b)
$$f_{xx}(0, \frac{\pi}{2}), f_{xy}(0, \frac{\pi}{2}), \text{ and } f_{yy}(0, \frac{\pi}{2})$$

(c)
$$f_{xx}(1,0), f_{xy}(1,0)$$
, and $f_{yy}(1,0)$

Theorem 2 (The Second Derivative Test). Let f(x, y) be a twice differentiable function with continuous second derivatives. Let

$$D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$$

If $f_x = 0$ and $f_y = 0$,

- (a) D(a,b) > 0 and $f_{xx}(a,b) < 0$, then
- (b) D(a,b) > 0 and $f_{xx}(a,b) > 0$, then
- (c) D(a,b) < 0, then
- (d) D(a, b) = 0, then

Challenge 3. Use the second derivative test to determine $f(x, y) = (1 - x^2) \sin(y)$ classify the which type of critical point $(0, \frac{\pi}{2})$ and (1, 0) are.

Challenge 4. Let $f(x,y) = x^3 - 6xy + y^3$. find and classify all the critical points of f(x,y).

Challenge 5. Find the dimensions that minimized the material used to construct an open rectangular box having a fixed volume of 32 cubic inches.

Challenge 6. Find the point (x, y) such that the sum of the distances squared from (x, y) to (0,0), (2,1), (0,3) is minimized. Hint: remember the distance formula from the Pythagorean theorem: $d^2 = (x - x_0)^2 + (y - y_0)^2$.