\qquad

Notesheet. Section 8.2: Partial Derivatives

Math 1220

Remember that the derivative of $f(x)$ at $x=a$ is the "rate of change of $f(x)$ at $x=a$ " and is defined by

$$
f^{\prime}(a):=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

With multivariable functions, "rate of change" is ambiguous if we do not define which input we are changing.

Definition 1. Let $f(x, y)$ be a function in two variables. We define the partial derivatives as
(a) $f_{x}(x, y)=\frac{\partial}{\partial x} f(x, y)=$
(b) $f_{y}(x, y)=\frac{\partial}{\partial y} f(x, y)=$

That is, $f_{x}(x, y)$ is the rate of change of $f(x, y)$ if x is varied and y is fixed and the opposite for $f_{y}(x, y)$.

Challenge 2. Let $f(x, y)=x^{2}+x y+y^{2}$. Compute f_{x} and f_{y}. Let $g(x, y)=e^{x^{2}} \sin (y)$. Compute g_{x} and g_{y}.

Remark 3. (a) We compute partial derivatives, say $\frac{\partial}{\partial x} f(x, y)$, by letting the variable we are differentiating vary and fixing all the others, so in this case, letting x vary and pretending y is constant.
(b) The chain rule, product rule, and the quotient rule all still apply for partial derivatives.

Challenge 4. Evaluate f_{x} and f_{y} for the following functions
(a) $f(x, y)=\ln \left(7+x y^{2}\right)$
(b) $f(x, y)=\frac{x-y}{x+y}$

Theorem 5. Just like $f^{\prime}(a)=0 \Longleftrightarrow$ the tangent line of the graph of $f(x)$ is horizontal, the tangent plane of $z=f(x, y)$ at (a, b) is horizontal if and only if

Definition 6. $\left(\frac{\partial}{\partial x}\right)^{2} f(x, y)=\frac{\partial^{2}}{\partial x^{2}} f(x, y)=f_{x x}(x, y)$ are all different notation for the same second partial derivative. Similarly, $\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y} f(x, y)\right)=\frac{\partial^{2}}{\partial x \partial y} f(x, y)=f_{y x}(x, y)$ are all different notations for the same partial derivative.

Challenge 7. Let $f(x, y)=x^{3}+x^{2} y+y^{2}$. Compute $f_{x x}(x, y), f_{x y}(x, y), f_{y x}(x, y)$, and $f_{y y}(x, y)$. Notice anything? Hint: Compute $f_{x}(x, y)$ and $f_{y}(x, y)$ first.

Theorem 8. If $f_{x y}$ and $f_{y x}$ are continuous, then

