Notesheet. Section 8.2: Partial Derivatives

Math 1220

Remember that the derivative of f(x) at x = a is the "rate of change of f(x) at x = a" and is defined by

$$f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

With multivariable functions, "rate of change" is ambiguous if we do not define which input we are changing.

Definition 1. Let f(x, y) be a function in two variables. We define the partial derivatives as

(a)
$$f_x(x,y) = \frac{\partial}{\partial x} f(x,y) =$$

(b) $f_y(x,y) = \frac{\partial}{\partial y} f(x,y) =$

That is, $f_x(x, y)$ is the rate of change of f(x, y) if x is varied and y is fixed and the opposite for $f_y(x, y)$.

Challenge 2. Let $f(x,y) = x^2 + xy + y^2$. Compute f_x and f_y . Let $g(x,y) = e^{x^2} \sin(y)$. Compute g_x and g_y .

Remark 3. (a) We compute partial derivatives, say $\frac{\partial}{\partial x} f(x, y)$, by letting the variable we are differentiating vary and fixing all the others, so in this case, letting x vary and pretending y is constant.

(b) The chain rule, product rule, and the quotient rule all still apply for partial derivatives.

Challenge 4. Evaluate f_x and f_y for the following functions

(a)
$$f(x,y) = \ln(7 + xy^2)$$

(b)
$$f(x,y) = \frac{x-y}{x+y}$$

Theorem 5. Just like $f'(a) = 0 \iff$ the tangent line of the graph of f(x) is horizontal, the tangent plane of z = f(x, y) at (a, b) is horizontal if and only if

Definition 6. $\left(\frac{\partial}{\partial x}\right)^2 f(x,y) = \frac{\partial^2}{\partial x^2} f(x,y) = f_{xx}(x,y)$ are all different notation for the same second partial derivative. Similarly, $\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} f(x,y)\right) = \frac{\partial^2}{\partial x \partial y} f(x,y) = f_{yx}(x,y)$ are all different notations for the same partial derivative.

Challenge 7. Let $f(x, y) = x^3 + x^2y + y^2$. Compute $f_{xx}(x, y)$, $f_{xy}(x, y)$, $f_{yx}(x, y)$, and $f_{yy}(x, y)$. Notice anything? Hint: Compute $f_x(x, y)$ and $f_y(x, y)$ first.

Theorem 8. If f_{xy} and f_{yx} are continuous, then