\qquad

Notesheet. Section 7.5: Surfaces of Revolution

Math 1220

Definition 1. A solid of revolution is

(a) Region R under the curve

(b) Solid obtained by revolving R about the x-axis

Challenge 2. We try to approximate the volume of a sphere by looking at the surface of revolution given by rotating the region under $f(x)=\sqrt{r^{2}-x^{2}}$ (a semicircle) on $[-r, r]$.

Theorem 3. The volume V of the solid of revolution obtained by revolving the region below the graph of a nonnegative function $y=f(x)$ from $x=a$ to $x=b$ about the x-axis is

$$
V=
$$

Challenge 4. Compute the volume of the following solids of revolution.
(a) Let $f(x)=\frac{1}{3} x$ and rotate the area under the function from $[0,3]$ around the x-axis.
(b) Let $f(x)=4$ and rotate the area under the function from $[0,7]$ around the x-axis.

Theorem 5. Let R be a region bounded by the curves $y=f(x)$ and $y=g(x)$ from $x=a$ to $x=b$. Then, the volume V of the solid of revolution obtained by revolving R about the x-axis is given by

$$
V=
$$

(a) R is the region bounded by the curves $y=f(x)$ and $y=g(x)$ from $x=a$ to $x=b$.

(b) The solid of revolution obtained by revolving R about the x-axis.

