Notesheet. Section 7.4: Improper Integrals

Math 1220

Recall that

Theorem 1. For integrable $f(x) \ge 0$,

$$\int_a^b f(x) \ dx = \text{Area under the curve } y = f(x) \text{ from } a \text{ to } b.$$

Definition 2. We define improper integrals over unbounded intervals as follows

(a)
$$\int_{a}^{\infty} f(x) dx =$$

(b)
$$\int_{-\infty}^{b} f(x) \ dx =$$

Furthermore, we say an improper integral is

- convergent if
- <u>divergent</u> if

Challenge 3. (Review). Find the limits $\lim_{x\to\infty} f(x)$, $\lim_{x\to-\infty} f(x)$, and $\lim_{x\to 0} f(x)$. Draw a graph if necessary.

(a)
$$f(x) = e^{kx}$$
 for $k > 0$

(b)
$$f(x) = \ln|x|$$

(c)
$$f(x) = \frac{2x^2 + x - 1}{3x^3 - 1}$$

(d)
$$f(x) = \frac{2x^3 + x - 1}{3x^3 - 1}$$

(e)
$$f(x) = \frac{2x^4 + x - 1}{3x^3 - 1}$$

Challenge 4. Using the definition of an improper integral, evaluate $\int_1^\infty x^{-2} dx$ if it is convergent.

Challenge 5. Is $\int_{-\infty}^{1} \frac{1}{x} dx$ convergent or divergent?

Challenge 6. Find the area of the shaded region where the curve is given by $f(x) = e^x$.

Theorem 7. Note that

$$= \int_{-\infty}^{c} f(x) \ dx + \int_{c}^{\infty} f(x) \ dx$$

for any real number c.