\qquad

Notesheet. Section 6.6+7.1: Area between two curves and Integration by parts

Math 1220

Theorem 1. If $f(x) \geq g(x)$ on $[a, b]$, the area of the region between f and g on $[a, b]$ is given by

Remark 2. The general formula is given by \int_{a}^{b}

Challenge 3. Find the area of the region bounded above by $f(x)=x$ and bounded below by $g(x)=x^{2}$ on $[0,1]$. Also can be stated "find the area of the region enclosed by $f(x)=x$ and $g(x)=x^{2} . "$

Challenge 4. Find the area of the region enclosed by $f(x)=2 x-1$ and $g(x)=x^{2}-4$.

Challenge 5. Find the area of the following region where the curve is $y=x^{3}$:

Theorem 6. Recall the product rule for derivatives.

$$
\frac{d}{d x}(f(x) \cdot g(x))=
$$

Theorem 7. Given functions $u=f(x)$ and $v=g(x)$, then

$$
\int u d v=
$$

Challenge 8. Evaluate the following indefinite integrals
(a) $\int x e^{x} d x$
(b) $\int \frac{\ln x}{x^{2}} d x$
(c) $\int x \cos (x) d x$

