Name:

Notesheet. Section 6.6+7.1: Area between two curves and Integration by parts

Math 1220

Theorem 1. If $f(x) \ge g(x)$ on [a, b], the area of the region between f and g on [a, b] is given by

Remark 2. The general formula is given by \int_a^b

Challenge 3. Find the area of the region bounded above by f(x) = x and bounded below by $g(x) = x^2$ on [0, 1]. Also can be stated "find the area of the region enclosed by f(x) = x and $g(x) = x^2$."

Challenge 4. Find the area of the region enclosed by f(x) = 2x - 1 and $g(x) = x^2 - 4$.

Challenge 5. Find the area of the following region where the curve is $y = x^3$:

Theorem 6. Recall the product rule for derivatives.

$$\frac{d}{dx}(f(x) \cdot g(x)) =$$

Theorem 7. Given functions u = f(x) and v = g(x), then

$$\int u \,\, dv =$$

Challenge 8. Evaluate the following indefinite integrals

(a)
$$\int x e^x dx$$

(b)
$$\int \frac{\ln x}{x^2} dx$$

(c)
$$\int x \cos(x) dx$$