\qquad

Notesheet. Section 6.5: Evaluation of Definite Integrals

Math 1220

Definition 1. (a) We define the indefinite integral of $f(x)$ to be

$$
\int f(x) d x=
$$

(b) We define the definite integral from a to b of $f(x)$ to be

$$
\int_{a}^{b} f(x) d x=
$$

Note, if $f(x) \geq 0$, then $\int_{a}^{b} f(x) d x=$

Theorem 2. (a) (Fundamental Theorem of Calculus) If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=
$$

where F is any antiderivative of f.
(b) (Net Change Theorem) If f is differentiable on (a, b) and f^{\prime} is continuous on (a, b), then

$$
\int_{a}^{b} f^{\prime}(x) d x=
$$

(c) (Average Value Formula) The average value of an integrable function f on $[a, b]$ is

Challenge 3. Compute the following indefinite integrals
(a) $\int\left(2 e^{x}+4 \cos x\right) d x$
(b) $\int \cos (x) \sin (\sin x) d x$
(c) $\int \frac{\sin (\ln x)}{x} d x$

Challenge 4. What is the average value of $f(x)=\cos x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$?

Challenge 5. Using geometric reasoning, what is the area of the region bounded above by $f(x)=1$ on $[0,1]$ and bounded below by $g(x)=x$ on $[0,1]$. Express this area as a combination of definite integrals.

