Notesheet. Section 12.3: Differentiation of Trigonometric Functions

Math 1220

Theorem 1. We have the following derivatives.

(a) $\frac{d}{dx}\sin(x) =$ (b) $\frac{d}{dx}\cos(x) =$

Challenge 2. Using the quotient rule, what is $\frac{d}{dx} \tan(x)$?

Challenge 3. Using the chain rule, what is $\frac{d}{dx} \sec(x)$?

Theorem 4 (Trigonometric Derivatives). We have the following derivatives.

•
$$\frac{d}{dx}\sin(x) =$$

• $\frac{d}{dx}\sin(x) =$
• $\frac{d}{dx}\sec(x) =$
• $\frac{d}{dx}\sec(x) =$
• $\frac{d}{dx}\csc(x) =$
• $\frac{d}{dx}\csc(x) =$
• $\frac{d}{dx}\cot(x) =$

Useful mnemonic: starts with 'c' \iff the derivative has a minus sign.

Challenge 5. Find an equation of the tangent line of $f(x) = \sin(x^2)$ at $\left(\sqrt{\frac{\pi}{2}}, 1\right)$.

Challenge 6. A rocket is blasting off into space by launching vertically. Let y(t) be a function indicating how high the rocket is at time t. 12,000 feet away, a camera is setup to watch the rocket. Let θ be the angle between the line from the camera to the launch point and the line between the camera and the rocket. How fast is θ changing at the instant when

- (a) the rocket is at a distance of 13,000 feet from the camera and
- (b) the distance is increasing at the rate of 480 feet/second?