\qquad

Notesheet. Section 12.3: Differentiation of Trigonometric Functions

Math 1220

Theorem 1. We have the following derivatives.
(a) $\frac{d}{d x} \sin (x)=$
(b) $\frac{d}{d x} \cos (x)=$

Challenge 2. Using the quotient rule, what is $\frac{d}{d x} \tan (x)$?

Challenge 3. Using the chain rule, what is $\frac{d}{d x} \sec (x)$?

Theorem 4 (Trigonometric Derivatives). We have the following derivatives.

- $\frac{d}{d x} \sin (x)=$
- $\frac{d}{d x} \cos (x)=$
- $\frac{d}{d x} \sec (x)=$
- $\frac{d}{d x} \csc (x)=$
- $\frac{d}{d x} \tan (x)=$
- $\frac{d}{d x} \cot (x)=$

Useful mnemonic: starts with 'c' \Longleftrightarrow the derivative has a minus sign.

Challenge 5. Find an equation of the tangent line of $f(x)=\sin \left(x^{2}\right)$ at $\left(\sqrt{\frac{\pi}{2}}, 1\right)$.

Challenge 6. A rocket is blasting off into space by launching vertically. Let $y(t)$ be a function indicating how high the rocket is at time $t .12,000$ feet away, a camera is setup to watch the rocket. Let θ be the angle between the line from the camera to the launch point and the line between the camera and the rocket. How fast is θ changing at the instant when
(a) the rocket is at a distance of 13,000 feet from the camera and
(b) the distance is increasing at the rate of 480 feet/second?

