Name:

Notesheet. Section 12.2: Trigonometric Functions

Math 1220

Definition 1. Given a right triangle with angle θ marked below, we define our trigonometric functions as follows: • $\sin \theta =$

Useful mnemonic: SOHCAHTOA

Challenge 2. Consider a right triangle with O = 5, A = 12. What is $\sin \theta$ equal to? What is $\cos \theta$ equal to?

Challenge 4. If
$$\theta = \frac{\pi}{4}$$
 radians, then $P = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. If $\theta = \frac{\pi}{6}$, then $P = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.

(a) Using geometry, figure out the (x, y)-coordinates of P when $\theta = \frac{\pi}{3}$. Hint: Draw a picture!

(b) What are the (x, y)-coordinates of P when $\theta = -\frac{7\pi}{6}$? What about when $\theta = \frac{11\pi}{4}$? Hint: $-\frac{7\pi}{6} = -\pi - \frac{\pi}{6}$.

- **Theorem 5** (Useful properties of sine and cosine). (a) For any value of θ , sin θ and cos θ are bounded by the inequalities
 - (b) $\sin(\theta + 2\pi) = \cos(\theta + 2\pi) =$
 - (c) The graphs of $\sin \theta$, $\cos \theta$, and $\tan \theta$ are given by

(d)
$$\sin(-\theta) =$$
, $\sin \theta = 0 \iff$

- (e) $\cos(-\theta) =$, $\cos \theta = 0 \iff$
- (f) $\tan(-\theta) =$, $\tan \theta = 0 \iff$, $\tan(\theta + \pi) =$

Challenge 6. Find all values of θ such that $\csc \theta = -2$.