\qquad

Notesheet. Section 12.2: Trigonometric Functions

Math 1220

Definition 1. Given a right triangle with angle θ marked below, we define our trigonometric functions as follows:

- $\sin \theta=$
- $\cos \theta=$
- $\tan \theta=$
- $\csc \theta=$
- $\sec \theta=$
- $\cot \theta=$

Adjacent (A)

Useful mnemonic: SOHCAHTOA

Challenge 2. Consider a right triangle with $O=5, A=12$. What is $\sin \theta$ equal to? What is $\cos \theta$ equal to?

Theorem 3. Let $P=(x, y)$ be a point on the unit circle with angle θ from the x-axis. Then,

Challenge 4. If $\theta=\frac{\pi}{4}$ radians, then $P=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. If $\theta=\frac{\pi}{6}$, then $P=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.
(a) Using geometry, figure out the (x, y)-coordinates of P when $\theta=\frac{\pi}{3}$. Hint: Draw a picture!
(b) What are the (x, y)-coordinates of P when $\theta=-\frac{7 \pi}{6}$? What about when $\theta=\frac{11 \pi}{4}$? Hint: $-\frac{7 \pi}{6}=-\pi-\frac{\pi}{6}$.

Theorem 5 (Useful properties of sine and cosine). (a) For any value of $\theta, \sin \theta$ and $\cos \theta$ are bounded by the inequalities
(b) $\sin (\theta+2 \pi)=\quad \cos (\theta+2 \pi)=$
(c) The graphs of $\sin \theta, \cos \theta$, and $\tan \theta$ are given by
(d) $\sin (-\theta)=$
, $\sin \theta=0 \Longleftrightarrow$
(e) $\cos (-\theta)=\quad, \cos \theta=0 \Longleftrightarrow$
(f) $\tan (-\theta)=\quad, \tan \theta=0 \Longleftrightarrow \quad, \tan (\theta+\pi)=$

Challenge 6. Find all values of θ such that $\csc \theta=-2$.

