\qquad

Notesheet. Section 11.6 Part II: More Taylor Series

Math 1220

Theorem 1. Given a function $f(x)$ such that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ on some interval I, then
(a) $\frac{d}{d x} f(x)=$
(b) $\int f(x) d x=$

Challenge 2. Find the Maclaurin series of the following series using the theorem above.
(a) $\frac{1}{(1-2 x)^{2}}$. (Hint: use what you know from challenges 5 and 7 on the " $11.1+11.6$ " notesheet.)
(b) $\ln \left(1+x^{2}\right)$ from the power series for $\frac{x}{1+x^{2}}$.

Challenge 3. Sometimes you can "recenter" a Taylor series.
(a) Find the Taylor series of e^{x} at $x=1$ using the Maclaurin series $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(b) Find the Taylor series of $\ln (2+3 x)$ at $x=10$
(c) Find the Taylor series of $\frac{x+5}{2+3 x}$ at $x=-5$
(d) Find the Taylor series of $\frac{2}{x}$ at $x=2$

