Name:_____

Notesheet. Sections 11.1+11.6: Taylor Polynomials and More Taylor Series

Math 1220

Definition 1. The *N*th Taylor polynomial $P_N(x)$ of f(x) at x = a is

Challenge 2. Find the 2nd Taylor polynomial of $f(x) = e^x$ at x = 0 and use it to approximate the decimal value of e.

Challenge 3. Find $P_2(x)$ for $f(x) = e^{-\frac{1}{2}x^2}$ at x = 0. Use $P_2(x)$ to approximate P(0 < Z < 1) for standard normal RV Z.

Theorem 4. If $f(x) = \sum a_n x^n$ on interval of convergence (-R < x < R), then

$$f(u(x)) =$$

Challenge 5. Find the Maclaurin series of the following functions and their intervals of convergence

(a)
$$f(x) = \frac{1}{1 - 2x}$$

(b)
$$f(x) = e^{x^5}$$

Theorem 6. If $f(x) = \sum a_n x^n$ on interval of convergence *I*, then

$$x^p f(x) =$$

Challenge 7. Find the Maclaurin series of the following functions and their intervals of convergence

(a)
$$f(x) = \frac{x^3}{1 - 2x}$$

(b)
$$f(x) = \frac{\ln(x+1)}{x}$$