Ν	ame:

Notesheet. Section 11.5: Power Series and Taylor Series

Math 1220

Remark 1. Recall that, for a differential function f(x), we can approximate f(x) near x = a with the linear equation

$$f(x) \approx f(a) + f'(a)(x-a)$$

We want to take this idea further.

Definition 2. A power series centered at x = a is a series of the form

Challenge 3. Are the following series power series?

(a)
$$\sum_{n=0}^{\infty} x^n$$

(b)
$$\sum_{n=0}^{\infty} x^{n-1}$$

(c)
$$\sum_{n=0}^{\infty} x^2 (x-1)^n$$

Challenge 4. When is $\sum_{n=0}^{\infty} x^n$ convergent and when is it divergent?

Definition 5. (a) The interval of convergence (IoC) for a power series

(b) The radius of convergence (RoC) is defined to be

Theorem 6. The radius of convergence for $\sum_{n=0}^{\infty} a_n (x-a)^n$ is given by R =

Challenge 7. Find the radius of convergence and the interval of convergence for the following power series:

(a)
$$\sum_{n=0}^{\infty} x^n$$

(b)
$$\sum_{n=0}^{\infty} n! (x-1)^n$$

(c)
$$\sum_{n=0}^{\infty} \frac{n^3 (x+1)^n}{(n+1)!}$$

(d)
$$\sum_{n=0}^{\infty} (2x+6)^n$$