Name:____

Notesheet. Section 11.5 Part 2: Power Series and Taylor Series

Math 1220

Definition 1. The Taylor series of f(x) at x = a is a power series

Challenge 2. Find the Taylor series of

(a)
$$f(x) = \frac{1}{x-1}$$
 at $x = 2$

(b) $f(x) = \ln(1+x)$ at x = 0

Definition 3. The <u>Maclaurin series</u> of f(x) is

Challenge 4. Find the Maclaurin series of $f(x) = xe^x$.

Challenge 5. The following are common Maclaurin series which you should know. Convince yourself of them at home!

(a)
$$e^x = \sum_{n=0}^{\infty}$$

(b) $\ln(1+x) = \sum_{n=1}^{\infty}$
(c) $\sin(x) = \sum_{n=0}^{\infty}$
(d) $\cos(x) = \sum_{n=0}^{\infty}$
(e) $\frac{1}{1-x} = \sum_{n=0}^{\infty}$

Theorem 6. If
$$\sum_{n=0}^{\infty} a_n (x-a)^n$$
 represents $f(x)$ at $x = a$, then
 $\frac{d}{dx} \sum_{n=0}^{\infty} a_n (x-a)^n =$

Theorem 7. If
$$\sum_{n=0}^{\infty} a_n (x-a)^n$$
 represents $f(x)$ at $x = a$, then $a_n =$