\qquad

Notesheet. Section 11.5 Part 2: Power Series and Taylor Series

Math 1220

Definition 1. The Taylor series of $f(x)$ at $x=a$ is a power series

Challenge 2. Find the Taylor series of
(a) $f(x)=\frac{1}{x-1}$ at $x=2$
(b) $f(x)=\ln (1+x)$ at $x=0$

Definition 3. The Maclaurin series of $f(x)$ is

Challenge 4. Find the Maclaurin series of $f(x)=x e^{x}$.

Challenge 5. The following are common Maclaurin series which you should know. Convince yourself of them at home!
(a) $e^{x}=\sum_{n=0}^{\infty}$
(b) $\ln (1+x)=\sum_{n=1}^{\infty}$
(c) $\sin (x)=\sum_{n=0}^{\infty}$
(d) $\cos (x)=\sum_{n=0}^{\infty}$
(e) $\frac{1}{1-x}=\sum_{n=0}^{\infty}$

Theorem 6. If $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ represents $f(x)$ at $x=a$, then $\frac{d}{d x} \sum_{n=0} a_{n}(x-a)^{n}=$

Theorem 7. If $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ represents $f(x)$ at $x=a$, then $a_{n}=$

