Notesheet. Section 11.3+11.4: Series and Series with Positive Terms

Math 1220

Challenge 1. Find the sum $\sum_{n=1}^{\infty} \left(\frac{2}{n^2 + n} + \frac{3}{2^n} \right)$.

Definition 2. The <u>Harmonic series</u> is the series

Theorem 3. (a) If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\lim_{n \to \infty} a_n =$

(b) (Test for Divergence) If $\lim_{n \to \infty} a_n$ does not exist or $\lim_{n \to \infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$

Challenge 4. Determine if
$$\sum_{n=1}^{\infty} e^{\sin(n\pi)}$$
 converges.

Other series to know and try at home:
$$\sum_{n=1}^{\infty} (-1)^n, \sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^2+1}, \sum_{n=1}^{\infty} \frac{n}{\sqrt{2n^2+10}}, \sum_{n=1}^{\infty} \tan(n).$$

Theorem 5. (Integral Test). Suppose f is a continuous, positive, and decreasing function on $[k, \infty)$. If $f(n) = a_n$ for all integers $n \ge k$, then

Challenge 6. Use the integral test to show that the Harmonic series is divergent. In general, for p a constant, use the integral test odeduce the convergence of

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

Theorem 7. (The Comparison Test) Suppose $\sum_{n=k}^{\infty} a_n$ and $\sum_{n=k}^{\infty} b_n$ are series with positive terms.

Challenge 8. Determine the convergence of

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1/3} - 0.1}$$

(b) $\sum_{n=0}^{\infty} \frac{2^n}{3^n + 2}$