\qquad

Notesheet. Section 11.3+11.4: Series and Series with Positive Terms

Math 1220

Challenge 1. Find the sum $\sum_{n=1}^{\infty}\left(\frac{2}{n^{2}+n}+\frac{3}{2^{n}}\right)$.

Definition 2. The Harmonic series is the series

Theorem 3. (a) If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=$
(b) (Test for Divergence) If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$

Challenge 4. Determine if $\sum_{n=1}^{\infty} e^{\sin (n \pi)}$ converges.

Other series to know and try at home: $\sum_{n=1}^{\infty}(-1)^{n}, \sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{n^{2}+1}, \sum_{n=1}^{\infty} \frac{n}{\sqrt{2 n^{2}+10}}, \sum_{n=1}^{\infty} \tan (n)$.

Theorem 5. (Integral Test). Suppose f is a continuous, positive, and decreasing function on $[k, \infty)$. If $f(n)=a_{n}$ for all integers $n \geq k$, then

Challenge 6. Use the integral test to show that the Harmonic series is divergent. In general, for p a constant, use the integral testto deduce the convergence of

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

Theorem 7. (The Comparison Test) Suppose $\sum_{n=k}^{\infty} a_{n}$ and $\sum_{n=k}^{\infty} b_{n}$ are series with positive terms.
(a) If $\sum_{n=k}^{\infty} b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, then $\sum_{n=k}^{\infty} a_{n}$
(b) If $\sum_{n=k}^{\infty} b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all n, then $\sum_{n=k}^{\infty} a_{n}$

Challenge 8. Determine the convergence of
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 3}-0.1}$
(b) $\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n}+2}$

