\qquad

Notesheet. Section 11.2: Infinite Sequences

Math 1220

Definition 1. An infinite sequence $\left\{a_{n}\right\}$ is a function whose domain is
The terms of the sequence are
So, the nth term is

Remark 2. Sometimes $\left\{a_{n}\right\}$ is denoted $\left\{a_{n}\right\}_{n=1}^{\infty}$. A sequence also can begin at any natural number k, e.g.
(a) $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}=$
(b) $\left\{(-1)^{n} n\right\}_{n=2}^{\infty}=$
(c) $\{(2 n+1)!\}_{n=0}^{\infty}=$

Challenge 3. Find a formula for the nth term of
(a) $\left\{a_{n}\right\}_{n=1}^{\infty}=\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}, \ldots\right\}$
(b) $\left\{a_{n}\right\}_{n=1}^{\infty}=\left\{-\frac{4}{5}, \frac{8}{8},-\frac{16}{11}, \frac{32}{14},-\frac{64}{17}, \ldots\right\}$

Definition 4. The sequence $\left\{a_{n}\right\}_{n=k}^{\infty}$ is called convergent if The sequence is called divergent if

Theorem 5. The "limit laws" hold for sequences as well: Assume

$$
\lim _{n \rightarrow \infty} a_{n}=A<\infty \text { and } \lim _{n \rightarrow \infty} b_{n}=B<\infty
$$

(a) For c a constant, $\lim _{n \rightarrow \infty} c a_{n}=$
(b) $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=$
(c) $\lim _{n \rightarrow \infty} a_{n} b_{n}=$
(d) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=$

Challenge 6. Determine if the following sequences converge or diverge. If the converge, give the limit.
(a) $\left\{a_{n}\right\}=\left\{\left(\frac{1}{2}\right)^{n}\right\}$
(b) $\left\{b_{n}\right\}=\left\{\frac{2 n^{2}+n}{3 n^{2}+1}\right\}$
(c) $\left\{c_{n}\right\}=\left\{\frac{2 n^{2}+n}{3 n^{3}+1}\right\}$
(d) $\left\{d_{n}\right\}=\left\{\frac{2 n^{2}+n}{3 \sqrt{n}+1}\right\}$

Theorem 7. The rate of growth of $n!\gg e^{n} \gg n^{k}$. In other words

- $\lim _{n \rightarrow \infty} \frac{e^{n}}{n!}=0=\lim _{n \rightarrow \infty} \frac{n^{k}}{n!}=\lim _{n \rightarrow \infty} \frac{n^{k}}{e^{n}}$
- $\lim _{n \rightarrow \infty} \frac{n!}{e^{n}}, \lim _{n \rightarrow \infty} \frac{n!}{n^{k}}$, and $\lim _{n \rightarrow \infty} \frac{e^{n}}{n^{k}}$ all do not exist and the corresponding sequences tend towards infinity.

Challenge 8. Of the microprocessors manufactured by a microelectronics firm for use in regularing fuel consumption in automobiles, 1.5% are defective. It can be shown that the probability of getting at least one defective microprocessor in a random sample of n microprocessors is $f(n)=1-(0.985)^{n}$. Consider the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=f(n)$. What is $\lim _{n \rightarrow \infty} a_{n}$ and interpret the result.

