Name:

Notesheet. Section 10.1: Probability Distributions and Random Variables

Math 1220

Remark 1. Recall that the probability of an event E occurring (such as getting a \square on a 6-sided die) is given by

P(E) =

What is the probability of rolling an odd number on a 6-sided die?

Definition 2. (a) The sample space S of an experiment is

- (b) An <u>event</u> is
- (c) A <u>random variable</u> (RV) X is a

and it is called $\underline{\text{continuous}}$ if and $\underline{\text{discrete}}$ if

- (d) A probability density function (PDF) of a random variable X in an interval I is a function f(x) such that
 - (i)
 - (ii)

Challenge 3. Are the following functions valid PDFs?

(a) For rolling a 6-sided die, let $f(t) = \frac{1}{6}$ for t = 1, ..., 6.

(b) For rolling a 6-sided die, let f(6) = 1 and f(t) = 0 for all other t.

(c)
$$S = [0, 1]$$
. Let $f(x) = x$.

(d)
$$S = [0, 1]$$
. Let $f(x) = \frac{e^x}{e - 1}$.

Challenge 4. Find the value of k such that $f(x) = ke^{-x}$ over $S = [0, \infty)$ is a PDF.

Definition 5. Let $[a, b] \subset I$, the interval for a continuous random variable X. Then, the event $E = a \leq X \leq b$ has probability

$$P(a \le X \le b) =$$

Challenge 6. $f(x) = \frac{1}{9}x^2$ on [0,3] is a PDF. Evaluate the following probabilities

- (a) $P(1 \le X \le 3)$
- (b) $P(1 \le X)$
- (c) P(X = 1)
- (d) P(x < 1)

Challenge 7. The life expectancy (in years) of a TV is a continuous RV with PDF

$$f(t) = \frac{1}{2}e^{-\frac{t}{2}}, \quad (0 \le t < \infty)$$

Find the probability that a randomly chosen TV will last more than 2 years. (This distribution is called an exponential density function.)