\qquad

Notesheet. Section 10.1: Probability Distributions and Random Variables

Math 1220

Remark 1. Recall that the probability of an event E occurring (such as getting a \odot on a 6 -sided die) is given by

$$
P(E)=
$$

What is the probability of rolling an odd number on a 6 -sided die?

Definition 2. (a) The sample space S of an experiement is
(b) An event is
(c) A random variable (RV) X is a
and it is called continuous if and discrete if
(d) A probability density function (PDF) of a random variable X in an interval I is a function $f(x)$ such that
(i)
(ii)

Challenge 3. Are the following functions valid PDFs?
(a) For rolling a 6 -sided die, let $f(t)=\frac{1}{6}$ for $t=1, \ldots, 6$.
(b) For rolling a 6 -sided die, let $f(6)=1$ and $f(t)=0$ for all other t.
(c) $S=[0,1]$. Let $f(x)=x$.
(d) $S=[0,1]$. Let $f(x)=\frac{e^{x}}{e-1}$.

Challenge 4. Find the value of k such that $f(x)=k e^{-x}$ over $S=[0, \infty)$ is a PDF.

Definition 5. Let $[a, b] \subset I$, the interval for a continuous random variable X. Then, the event $E=" a \leq X \leq b$ " has probability

$$
P(a \leq X \leq b)=
$$

Challenge 6. $f(x)=\frac{1}{9} x^{2}$ on $[0,3]$ is a PDF. Evaluate the following probabilities
(a) $P(1 \leq X \leq 3)$
(b) $P(1 \leq X)$
(c) $P(X=1)$
(d) $P(x<1)$

Challenge 7. The life expectancy (in years) of a TV is a continuous RV with PDF

$$
f(t)=\frac{1}{2} e^{-\frac{t}{2}}, \quad(0 \leq t<\infty)
$$

Find the probability that a randomly chosen TV will last more than 2 years. (This distribution is called an exponential density function.)

