\qquad

Notesheet. Section 10.1+10.2: Joint Distributions, Expected Value, and Standard Deviation

Math 1220

Definition 1. A joint probability dnesity function of the random variables X and Y on a region D is a function $f(x, y)$ such that

Theorem 2. The event $E=$ " (X, Y) " in R has probability

$$
P[(X, Y) \text { in } R]=
$$

Challenge 3. Show that

$$
f(x, y)=\frac{1}{4}(x+2 y) ; D=\{0 \leq x \leq 2 ; 0 \leq y \leq 1\}
$$

is a joint probability density function. Find the probability $P(0 \leq X \leq 1 ; 0.5 \leq Y \leq 1)$.

Definition 4. The expected value or mean $E(X)$ of a continuous random variable X on an interval I is given by

$$
E(X)=
$$

and refers to "the value one would expect to find if one repeated the experiment infinitely many times."

For a discrete RV Y with possible values $\left\{y_{1}, \ldots, y_{n}\right\}$ and corresponding probabilities $\left\{p_{1}, \ldots, p_{n}\right\}$,

$$
E(X)=
$$

Challenge 5. Let $f(x)=\frac{e^{x}}{e-1}$ be the PDF for X on $I=[0,1]$. Find $E(X)$.

Definition 6. The variance of a random variable X on I is given by

$$
\operatorname{Var}(X)=
$$

and the standard deviation of X is

$$
\sigma=
$$

Remark 7. If we rewrite $E(X)=\mu$, since $E(X)$ is a constant, then we get an easier formula for variance given by

$$
\operatorname{Var}(X)=
$$

Challenge 8. Let $f(x)=\frac{e^{x}}{e-1}$ be the PDF for RV X on $I=[0,1]$. Find $\operatorname{Var}(X)$.

Challenge 9. Assume X is a $R V$ on I with $\operatorname{Var}(X)=2$ and $\int_{I} x^{2} f(x) d x=11$. Find $E(X)$.

