\qquad

Notesheet. Section 6.5: Evaluating Definite Integrals

Math 1210

Theorem 1 (Properties of Definite Integrals). Let f and g be integrable functions. Then,
(a) $\int_{a}^{a} f(x) d x=$
(b) $\int_{a}^{b} f(x) d x=$
(c) $\int_{a}^{b} k f(x) d x=$
(d) $\int_{a}^{b}[f(x) \pm g(x)] d x=$
(e) $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=$

Challenge 2. Evaluate

$$
\int_{0}^{4} \sqrt{2 x+1} d x
$$

by first finding $\int \sqrt{2 x+1} d x$ and then applying the Fundamental Theorem of Calculus.

Theorem 3 (Substitution for Definite Integrals). If g^{\prime} is continuous on $[a, b]$ and f is continuous on the range of $g(x)$, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int
$$

Challenge 4. Find the area under the graph of $f(x)=8 x e^{x^{2}}$ on the interval $[0,2]$.

Challenge 5. If f is continuous and $\int_{0}^{4} f(x) d x=10$, find $\int_{0}^{2} f(2 x) d x$. If g is continuous and $\int_{0}^{9} g(x) d x=4$, find $\int_{0}^{3} x g\left(x^{2}\right) d x$.

Theorem 6. Given a function f that is integrable on $[a, b]$, the average value of f over $[a, b]$ is

Challenge 7. The height of the water in Swan Lake is measured periodically over the course of a year. The height $h(t)$ in inches as a function of time t in weeks is modelled by

$$
h(t)=40+\frac{1}{(t+1)^{2}} .
$$

What is the average height of the lake water that year?

