Ν	ame:
IN	ame:

Notesheet. Section 6.4: Fundamental Theorem of Calculus

Math 1210

Theorem 1 (Fundamental Theorem of Calculus). If f is continuous on [a, b], then

$$\int_{a}^{b} f(x) \, dx =$$

where F is any antiderivative of f.

Challenge 2. If R is the region under the graph of f(x) = 2x on the interval [1, 5], then find the area of R two different ways.

Challenge 3. Consider the curve $y = -x^2 + 9$. What is the area of the region bounded by the curve and the x-axis?

Challenge 4 (Negative area). Consider again the curve $y = -x^2 + 9$. Compute $A = \int_{-3}^{5} (-x^2 + 9) dx$. Can you shade the region whose area is A?

Challenge 5. The population of Calculusville grows at a rate of $900t^2 - 2,000t + 2,500$ people per month, where t is the number of months since November of 2017. What will be the net change in the population of Calculusville from January 2018 to February 2018.?

Challenge 6. Evaluate

$$\int_{2}^{3} \left(x^{-3} + x^{-1} \right) \, dx.$$