Ν	ame:

Notesheet. Section 6.3: Area and the Definite Integral

Math 1210

Challenge 1. (Together) An oil company produces a constant rate of F'(t) = 1.2 million barrels per year. How many barrels does it produce in 4 years? (That's F(4)). How many barrels does it produce in t years? (That's F(t)).

Challenge 2. (Together) What if the rate of oil production F'(t) is not constant? How can we approximate the amount of oil produced in t years? (That's F(t) again).

Theorem 3 (Area under Graph of a Function). If f is a nonnegative continuous function on [a, b], then the area A of the region under the graph is

$$A = \lim_{n \to \infty}$$

where $x_1, ..., x_n$ are points from the *n* subintervals of [a, b] of equal width $\Delta x = \frac{b-a}{n}$.

Definition 4. If f is a function defined on [a, b], and

exists for all choices of points $x_1, ..., x_n$ in the subintervals, then this limit is the area under the curve and it is called the <u>definite integral</u> and it is denoted $\int_a^b f(x) dx$.

Theorem 5. If f is defined on [a, b] and continuous, then $\int_a^b f(x) dx$ exists. (We say "f is integrable on [a, b].")

Challenge 6. What does $\int_{2}^{6} (x^{2}+1) dx$ mean in terms of area? Draw a picture. Approximate the area $\int_{2}^{6} (x^{2}+1) dx$ by cutting [2, 6] into 4 equal intervals. Now compute $\int_{2}^{6} (x^{2}+1) dx$ a different way. Was the approximation accurate?

Challenge 7. What happens if the function dips down below the x-axis? What is the area under the curve y = 4 - x on the interval [0,5]? What is $\int_0^5 (4 - x) dx$?