Name:

\qquad

Notesheet. Section 6.3: Area and the Definite Integral

Math 1210

Challenge 1. (Together) An oil company produces a constant rate of $F^{\prime}(t)=1.2$ million barrels per year. How many barrels does it produce in 4 years? (That's $F(4)$). How many barrels does it produce in t years? (That's $F(t)$).

Challenge 2. (Together) What if the rate of oil production $F^{\prime}(t)$ is not constant? How can we approximate the amount of oil produced in t years? (That's $F(t)$ again).

Theorem 3 (Area under Graph of a Function). If f is a nonnegative continuous function on $[a, b]$, then the area A of the region under the graph is

$$
A=\lim _{n \rightarrow \infty}
$$

where $x_{1},,, x_{n}$ are points from the n subintervals of $[a, b]$ of equal width $\Delta x=\frac{b-a}{n}$.

Definition 4. If f is a function defined on $[a, b]$, and
exists for all choices of points $x_{1},,, x_{n}$ in the subintervals, then this limit is the area under the curve and it is called the definite integral and it is denoted $\int_{a}^{b} f(x) d x$.

Theorem 5. If f is defined on $[a, b]$ and continuous, then $\int_{a}^{b} f(x) d x$ exists. (We say " f is integrable on $[a, b] . ")$

Challenge 6. What does $\int_{2}^{6}\left(x^{2}+1\right) d x$ mean in terms of area? Draw a picture. Approximate the area $\int_{2}^{6}\left(x^{2}+1\right) d x$ by cutting $[2,6]$ into 4 equal intervals. Now compute $\int_{2}^{6}\left(x^{2}+1\right) d x$ a different way. Was the approximation accurate?

Challenge 7. What happens if the function dips down below the x-axis? What is the area under the curve $y=4-x$ on the interval $[0,5]$? What is $\int_{0}^{5}(4-x) d x$?

