\qquad

Notesheet. Section 6.3: Area and the Definite Integral

Math 1210

Challenge 1. An oil company produces a constant rate of 1.2 million barrels per year. How many barrels does it produce in 4 years? How many barrels does it produce in t years?

Theorem 2 (Area under Graph of a Function). If f is a nonnegative continuous function on $[a, b]$, then the area A of the region under the graph is

$$
A=\lim _{n \rightarrow \infty}
$$

where x_{1}, \ldots, x_{n} are points from the n subintervals of $[a, b]$ of equal width $\Delta x=\frac{b-a}{n}$.

Definition 3. If f is a function defined on $[a, b]$, and
exists for all choices of points x_{1}, \ldots, x_{n} in the subintervals, then this limit is the area under the curve and it is called the definite integral and it is denoted $\int_{a}^{b} f(x) d x$.

Theorem 4. If f is continuous on $[a, b]$, then $\int_{a}^{b} f(x) d x$ exists. (We say " f is integrable on $[a, b] . ")$

Challenge 5. What does $\int_{2}^{6}\left(x^{2}+1\right) d x$ mean in terms of area? Draw a picture. Approximate the area $\int_{2}^{6}\left(x^{2}+1\right) d x$ by cutting $[2,6]$ into 4 equal intervals. Is this approximation accurate?

Challenge 6. What happens if the function dips down below the x-axis? What is the area under the curve $y=4-x$ on the interval [0,5]? Using the definition, what is $\int_{0}^{5}(4-x) d x$?

Challenge 7. Compute $F(x)=\int(4-x) d x$. What is $F(5)-F(0)$?

