\qquad

Notesheet. Section 6.2: Integration by Substitution

Math 1210

Challenge 1. We have learned how to solve basic integrals. What about more complicated ones? Can you solve this more complicated integral?

$$
\int 2 x \sqrt{1+x^{2}} d x
$$

Remember, you need only find a function $F(x)$ such that $F^{\prime}(x)=2 x \sqrt{1+x^{2}}$. (Hint: think about the chain rule for derivatives.)

Theorem 2. Let F and g be differentiable functions. If F^{\prime} is continuous on the range of g, then

$$
\int F^{\prime}(g(x)) g^{\prime}(x) d x=
$$

Challenge 3. Compute the following indefinite integrals using substitution.
(a) $\int \sqrt{2 x+1} d x$ (Hint: substitute $u=2 x+1$)
(b) $\int \frac{x}{\sqrt{1-4 x^{2}}} d x$
(c) $\int e^{5 x} d x$

Challenge 4. The registrar of a university estimates that total student enrollment in the Continuing Education division will grow at the rate of

$$
N^{\prime}(t)=2000(1+0.2 t)^{-\frac{3}{2}} \text { students/year }
$$

t years from now. If the current student enrollment is 1000, find an expression giving the total student enrollment t years from now. What will student enrollment be 5 years from now?

Challenge 5. Find $\int \frac{(\ln x)^{2}}{x} d x$

