Name:
Name:

Notesheet. Section 6.1: Antiderivatives a.k.a. Integration Math 1210

Definition 1. An <u>antiderivative</u> of a function f is some other function F such that

Challenge 2. If $f(x) = x^2 - \frac{1}{5}x + 1$, show that $F(x) = \frac{1}{3}x^3 - \frac{1}{10}x^2 + x$ is an antiderivative of f. If $g(x) = x^3 - x + 4$, find an antiderivative G of g.

Theorem 3. If G is an antiderivative of f, then every antiderivative F of f is of the form

Definition 4. What are antidifferentiation, integration, integral sign, indefinite integral, integrand, and the constant of integration?

Theorem 5.

(1)
$$\int k \, dx =$$

(2)
$$\int x^n \, dx =$$

(3)
$$\int kf(x) \, dx =$$

(4)
$$\bullet \int [f(x) + g(x)] \, dx =$$

$$\bullet \int [f(x) - g(x)] \, dx =$$

(5)
$$\int e^x \, dx =$$

(6)
$$\int x^{-1} \, dx =$$

Challenge 6. Find the indefinite integral of

1

•
$$f(x) = x^4 + x^{-3} + x^2 + x +$$

• $g(x) = 5e^x + 2\frac{1}{x} + 7e^{-x}$

Challenge 7. The velocity of a train at time t is v(t) = 9t. What is the velocity at time 0? What is the acceleration of the train as a function of time? What is the position of the train as a function of time, given that the position at time 0 is 0? (The final question is an "initial value problem".)