# Notesheet. Section 6.1: Antiderivatives a.k.a. Integration 

Math 1210

Definition 1. An antiderivative of a function $f$ is some other function $F$ such that

Challenge 2. If $f(x)=x^{2}-\frac{1}{5} x+1$, show that $F(x)=\frac{1}{3} x^{3}-\frac{1}{10} x^{2}+x$ is an antiderivative of $f$. If $g(x)=x^{3}-x+4$, find an antiderivative $G$ of $g$.

Theorem 3. If $G$ is an antiderivative of $f$, then every antiderivative $F$ of $f$ is of the form

Definition 4. What are antidifferentiation, integration, integral sign, indefinite integral, integrand, and the constant of integration?

## Theorem 5.

(1) $\int k d x=$
(2) $\int x^{n} d x=$
(3) $\int k f(x) d x=$
(4) $\quad \int[f(x)+g(x)] d x=$

- $\int[f(x)-g(x)] d x=$
(5) $\int e^{x} d x=$
(6) $\int x^{-1} d x=$

Challenge 6. Find the indefinite integral of

- $f(x)=x^{4}+x^{-3}+x^{2}+x+1$
- $g(x)=5 e^{x}+2 \frac{1}{x}+7 e^{-x}$

Challenge 7. The velocity of a train at time $t$ is $v(t)=9 t$. What is the velocity at time 0 ? What is the acceleration of the train as a function of time? What is the position of the train as a function of time, given that the position at time 0 is 0 ? (The final question is an "initial value problem".)

