Name:

Notesheet. Section 5.4: Differentiation of exponential functions

Math 1210

Challenge 1. Recall the definition of e (what happens when you take the derivative of e^x ?). Using this fact, find the derivatives of the following functions.

(a) $f(x) = xe^x$

(b)
$$g(k) = \sqrt{3} + e^k$$

Challenge 2. Of course differentiation rules that apply to functions in general can be applied to exponential functions too! Please differentiate the following functions, applying the chain rule as needed.

- (a) $f(t) = e^{2t}$
- (b) $h(x) = e^{\ell(x)}$ (here ℓ is an arbitrary function).

Challenge 3. MOAR derivatives of exponents!!!

(a) If
$$y = e^{3t^2+1}$$
, find $\frac{dy}{dt}$

Challenge 4. The equation to calculate continuous compounded interest is $A = Pe^{rt}$ (you can think of A as a function of t), where t is the number of years, P is the principal (amount of money you started with), r is the annual interest rate, and A is the accumulated amount of money at the end of t years.

What is $\frac{dA}{dt}$? What does the variable $\frac{dA}{dt}$ represent in the context of the above?

Challenge 5. Let b be a positive constant. What is the derivative of b^x ? (Hint: Rewrite b^x in a clever way involving the functions e^x and $\log_e(x)$, then differentiate.)