\qquad

Notesheet. Section 5.2: Logarithms

Math 1210

Definition 1. We define $y=\log _{b} x$ to be the number such that

Challenge 2. What are the following logarithms? Try to justify your answer from the definition of $\log _{b} x$ above.
(a) $\log _{b} m+\log _{b} n$
(b) $\log _{b} m-\log _{b} n$
(c) $n \log _{b} m$
(d) $\log _{b} 1$
(e) $\log _{b} b$

Challenge 3. Remembering theorem 5 on notesheet 5.1, can you figure out the following properties of $f(x)=\log _{b} x$?

- Its domain is
- Its range is
- Its graph always passes through the point
- It is continuous on
- If $b>1$, then it is increasing on . If $b<1$, it is decreasing on

Challenge 4. What is $\log _{b}\left(b^{x}\right)$? What is $b^{\log _{b} x}$?

Challenge 5. $f(x)=\log _{e} x=\ln x$ is called the natural logarithm and is the inverse function to $g(x)=e^{x}$. In other words, for all x in the appropriate domain $(f \circ g)(x)=x$ and $(g \circ f)(x)=x$. Can you graph the equation $f(x)=\ln (x)$?

Challenge 6. Write each of the following expressions as the logarithm of a single quantity
(a) $2 \ln a+3 \ln b$
(b) $\ln 2+\frac{1}{2} \ln (x+1)-2 \ln (1+\sqrt{x})$

Challenge 7. Expand and simplify the following expressions.
(a) $\log _{10} x(x+1)^{4}$
(b) $\ln x e^{-x^{2}}$
(c) $\ln \frac{x^{2}}{\sqrt{x}(1+x)^{2}}$

Challenge 8. Use logarithms to solve the equation $e^{0.4 t}=8$ for t.

