Notesheet. Section 5.1: Exponential Functions

Math 1210

Definition 1. An exponential function f with base b and exponent x is the function

Theorem 2. If $a, b \in \mathbb{R}, a, b>0$, and $x, y \in \mathbb{R}$, then

- $b^{x} \cdot b^{y}=$
- $\frac{b^{x}}{b^{y}}=$
- $\left(b^{x}\right)^{y}=$
- $(a b)^{x}=$
- $\left(\frac{a}{b}\right)^{x}=$

Challenge 3.

- Can you simplify $(81 \cdot 16)^{-\frac{1}{4}}$?
- Can you simplify $\frac{30^{-2 / 3}}{30^{1 / 3}}$?
- Can you simplify $\left(\frac{5^{1 / 6}}{5^{1 / 12}}\right)^{6}$?

Challenge 4. Can you sketch the graph of the function $f(x)=\left(\frac{1}{3}\right)^{x}$?

Theorem 5. The exponential function $f(x)=b^{x}, b>0, b \neq 1$, has the following properties:

- Its domain is
- Its range is
- Its graph always passes through the point
- It is continuous on
- If $b>1$, then it is increasing on . If $b<1$, it is decreasing on

Challenge 6. Can you sketch the graph of the function $f(x)=\left(\frac{1}{3}\right)^{-x}$?

Definition 7. e is a very magical number that is approximately equal to 2.7182818. e is exactly equal to $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} . e$ is also the ONLY number b (other than 0) such that $\frac{d}{d x}\left[b^{x}\right]=b^{x}!!!!$

Challenge 8. Can you sketch the graph of the function $f(x)=e^{x}$?

