\qquad

Notesheet. Section 4.4+4.5: Optimization

Math 1210

Definition 1. Let f be a function. Then, we say a value $f(c)$ is an absolute maximum value (or global maximum value) of f if

Theorem 2. If f is continuous on a closed interval $[a, b]$, then f acheives an absolute maximum value and an absolute minimum value on $[a, b]$.

Challenge 3. Find the absolute maximum and minimum values of the function

$$
f(x)=x^{3}-3 x^{2}+1, \quad-\frac{1}{2} \leq x \leq 4
$$

Challenge 4. A manufacturer of tennis rackets find that the total cost $C(x)$ (in dollars) of manufacturing x rackets/day is given by $C(x)=400+4 x+0.0001 x^{2}$. Each racket can be sold at a price of p dollars, where p is related to x by the demand equation $p=10-0.0004 x$. If all rackets that are manufactured can be sold, find the daily level of production that will yield a maximum profit for the manufacturer. (Hint: $\sqrt{15} \approx 3.9$).

Challenge 5. Find the global minimum and maximum of $f(x)=|x-3|$ on $[1,4]$.

Challenge 6. Find the point on the parabola $y=x^{2}+1$ that is closest to the point $(0,2)$.

Challenge 7. A woman launches her boat from point A on a bank of a straight river, 1 km wide, and wants to reach point $B, 10 \mathrm{~km}$ downstream on the opposite bank, as quickly as possible. She could row her boat directly across the river to point C and then run to B, or she could row directly to B, or she could row to some point D between C and B, and then run to B. If she can row $6 \mathrm{~km} / \mathrm{h}$ and run $10 \mathrm{~km} / \mathrm{h}$, where should she land to reach B as soon as possible? (We assume that the speed of the water is negligible compared with the speed at which the woman rows.) Hint: $\frac{5}{24} \approx 0.20833, \frac{37}{40}=0.925$, and $\sqrt{101} \approx 10.05$.

Challenge 8. A grain silo has the shape of a right circular cylinder surmounted by a hemisphere (and the silo has no base). If the silo is to have a capacity of $18 \pi \mathrm{~m}^{3}$, find the radius and height of the silo that requires the least amount of material to construct.

