Notesheet. Section 4.3: Curve Sketching

Math 1210

Definition 1. The line $x=a$ is a vertical asymptote of the function f if one of the following is true:

Challenge 2. Let $f(x)=\frac{x^{2}}{x^{2}-16}$. Can you find all (if any) vertical asymptotes of f ? Sketch f.

Challenge 3. Let f be a rational function (recall that $f(x)=\frac{p(x)}{q(x)}$ where the numerator and denominator are polynomials). What must happen to $p(x)$ and $q(x)$ at a point a in order for f to have a vertical asymptote $x=a$?

Definition 4. The line $y=b$ is a horizontal asymptote of the function f if one of the following is true:

Challenge 5. Let $g(x)=2+\frac{1}{x^{3}}$. Can you find all (if any) horizontal asymptotes of g ? Find all (if any) vertical asymptotes of g. Sketch g. Hint: $2^{-\frac{1}{3}} \approx 0.79$.

Challenge 6. Sketch the graph of the function $f(x)=\frac{x^{2}-x}{x^{2}-4}$. Hint: $\sqrt{3} \approx 1.73$.

Challenge 7. Sketch the graph of the function $f(x)=\frac{1}{x}$. Identify the horizontal and vertical asymptotes. Identify any concavity.

