\qquad

Notesheet. Section 4.2: Applications of the Second Derivative

Math 1210

Definition 1. Let a function f be differentiable on an interval (a, b). Then,
(a) f is concave upward on (a, b) if
(b) f is concave downward on (a, b) if

Challenge 2. Where is the following graph concave upwards and where is it concave downwards?

Challenge 3. Consider the function $f(x)=x^{3}$. Where is f concave upward and where is it concave downward? What can we say about $f^{\prime \prime}(x)$ on these intervals?

Theorem 4. Let f be twice differentiable on an interval (a, b). Then,
(a) If $f^{\prime \prime}(x)>0$ for each value of x in (a, b), then
(b) If $f^{\prime \prime}(x)<0$ for each value of x in (a, b), then

Definition 5. A point of inflection $(a, f(a))$ on a graph of a function f is

Challenge 6. What is the second derivative of $f(x)=x^{3}$ at the point(s) of inflection? What is the second derivative at the point(s) of inflection of

$$
g(x)= \begin{cases}\frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Finally, does $h(x)=x^{4}$ have any inflection points?

Theorem 7. If $(a, f(a))$ is an inflection point for the graph of f, then $f^{\prime \prime}(a)=0$ or $f^{\prime \prime}(a)$ does not exist.

Challenge 8. Consider the function $f(x)=x^{4}-4 x^{3}$. Where is f concave up and concave down? Where are its points of inflection? Find the points where $f^{\prime}(x)=0$ and evaluate the second derivative of f at these points.

Theorem 9. Let f be a twice differentiable function. Then, if $f^{\prime}(c)=0$ and
(a) $f^{\prime \prime}(c)<0$, then
(b) $f^{\prime \prime}(c)>0$, then
(c) $f^{\prime \prime}(c)=0$, then

