\qquad

Notesheet. Section 3.6: Implicit Differentiation

Math 1210

Definition 1. An explicit relationship between independent variable x and a dependent variable y is a relationship of the form $y=f(x)$, such as $y=\sqrt{x^{3}+1}$ or $y=5 x^{2}+7 x+1$. An

Challenge 2. What is an equation whose solution is a circle of radius 2 centered at the origin, $(0,0)$. Is this equation an implicit or explicit relationship between x and y ?

Challenge 3. If $x^{2}+y^{2}=25$, what is $\frac{d y}{d x}$? What is an equation of the tangent line to the circle $x^{2}+y^{2}=25$ at the point $(3,4)$? Hint: Do not solve for y in terms of x. Instead, assume y is a function of x, say $y=f(x)$, and use the chain rule. Your final answer may be in terms of x and y.

Definition 4. The process of finding the derivative $\frac{d y}{d x}$ from an implicit relationship between x and y is called implicit differentiation.

Challenge 5. Let $x^{3}+y^{3}=6 x y$ be the "folium of Descartes". What is y^{\prime} ? Find the tangent line to the folium at the point $(3,3)$. At what points in the first quadrant is the tangent line horizontal?

Challenge 6. In the "Lots of Derivatives" notesheet, you were asked the following question. Air is being pumped into a spherical weather balloon. At any time t, the volume of the balloon is $V(t)$ and its radius is $r(t)$. Recall that, for a sphere, $V=\frac{4}{3} \pi r^{3}$. What is $\frac{d V}{d t}$ in terms of $r(t)$ and $r^{\prime}(t)$?

Definition 7. In the above problem, finding $\frac{d V}{d t}$ required using $r^{\prime}(t)$ in your final answer. This is a related rate. A related rate is

Challenge 8. A water tank has the shape of an inverted circular cone with base radius 2 m and height 4 m . If water is being pumped into the tank at a rate of 2 cubic meters/minute, find the rate at which the water level is rising when the water is 3 m deep.

