Notesheet. Section 3.6: Implicit Differentiation

Math 1210

Definition 1. An explicit relationship between independent variable x and a dependent variable y is a relationship of the form y = f(x), such as $y = \sqrt{x^3 + 1}$ or $y = 5x^2 + 7x + 1$. An implicit relationship between an independent variable x and dependent variable y is

Challenge 2. What is an equation whose solution is a circle of radius 2 centered at the origin, (0,0). Is this equation an implicit or explicit relationship between x and y?

Challenge 3. If $x^2 + y^2 = 25$, what is $\frac{dy}{dx}$? What is an equation of the tangent line to the circle $x^2 + y^2 = 25$ at the point (3,4)? Hint: Do not solve for y in terms of x. Instead, assume y is a function of x, say y = f(x), and use the chain rule. Your final answer may be in terms of x and y.

Definition 4. The process of finding the derivative $\frac{dy}{dx}$ from an implicit relationship between x and y is called implicit differentiation.

Challenge 5. Let $x^3 + y^3 = 6xy$ be the "folium of Descartes". What is y'? Find the tangent line to the folium at the point (3,3). At what points in the first quadrant is the tangent line horizontal?

Challenge 6. In the "Lots of Derivatives" notesheet, you were asked the following question. Air is being pumped into a spherical weather balloon. At any time t, the volume of the balloon is V(t) and its radius is r(t). Recall that, for a sphere, $V = \frac{4}{3}\pi r^3$. What is $\frac{dV}{dt}$ in terms of r(t) and r'(t)?

Definition 7. In the above problem, finding $\frac{dV}{dt}$ required using r'(t) in your final answer. This is a related rate. A related rate is

Challenge 8. A water tank has the shape of an inverted circular cone with base radius 2m and height 4m. If water is being pumped into the tank at a rate of 2 cubic meters/minute, find the rate at which the water level is rising when the water is 3m deep.

