\qquad

Notesheet. Sections 3.3 (More Derivatives)

Math 1210

Theorem 1. Recall the chain rule, which says

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

or, alternatively

$$
\frac{d}{d x}[(f \circ g)(x)]=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Challenge 2. Using the chain rule, compute the derivative of $f(x)=(1-x)^{2}$. Make sure it agrees with the answer when you expand $(1-x)^{2}$. Also make sure it agrees with the product rule when thinking of $f(x)=g(x) h(x)$ with $g(x)=(1-x)=h(x)$.

Challenge 3. If $F(x)=f(g(x))$ where $f(-2)=8, f^{\prime}(-2)=4, f^{\prime}(5)=3, g(5)=-2$, and $g^{\prime}(5)=6$, find $F^{\prime}(5)$.

Challenge 4. What is the derivative of $f(x)=(2 x-5)^{4}\left(8 x^{2}-5\right)^{-2}$?

Challenge 5. Find an equation for the tangent line to the curve $y=\frac{|x|}{\sqrt{2-x^{2}}}$ at $(1,1)$.

Challenge 6. Find the points on the graph of $f(x)=\frac{1}{3}\left(x^{2}-9\right)(x-3)$ where the tangent line is horizontal.

Challenge 7. A manufacturer produces colts of fabric with a fixed width. The quantity q of this fabric (in yards) that is sold is a function of the selling price p (in dollars per yard), so we can write $q=f(p)$. Then, the total revenue earned with selling price p is $R(p)=p f(p)$.
(a) What does it mean to say that $f(20)=10,000$ and $f^{\prime}(20)=-350$?
(b) Assuming the values in part (a), find $R^{\prime}(20)$ and interpret your answer.

