N٤	ame:
١Vċ	ame:

Notesheet. Sections 3.1 and 3.2 (Derivatives, cont.)

Math 1210

Theorem 1. Using our limit laws and the definition of the derivative, we define the following additional rules on derivatives for functions f(x) and g(x), as well as real number c.

•
$$\frac{d}{dx}[cf(x)] = c\frac{d}{dx}[f(x)]$$

•
$$\frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}[f(x)] \pm \frac{d}{dx}(g(x))$$

Challenge 2. The demand function for JM's desk lamps is given by

$$p(x) = -0.1x^2 - 0.4x + 35$$

where x is the quantity of lamps demanded in thousands and p(x) is the price of a lamp in dollars. What is p'(x)? What is the rate of change of the unit price when the quantity demanded is 10,000 lamps (x = 10)? What is the price of a lamp at that level of demand?

Challenge 3. Let $f(x) = x^n$ and $g(x) = x^m$. What is $\frac{d}{dx}[f(x)g(x)]$?

Definition 4. We define the product rule for derivatives to be

Challenge 5. Let $f(x) = (5x^2 + 1)(2\sqrt{x} - 1)$. What is f'(x)?

Challenge 6. Let $f(x) = x^n$ and g(x) = x. What is $\frac{d}{dx}[(f \circ g)(x)]$? What is $\frac{d}{dx}[(g \circ f)(x)]$?

Definition 7. We define the <u>chain rule</u> for derivatives to be

Challenge 8. Let f(x) and g(x) be differentiable functions. What is the derivative of $\frac{f(x)}{g(x)} = f(x)[g(x)]^{-1}$? (Hint: Use the product rule and the chain rule.)