Notesheet. Sections 3.1 and 3.2 (Derivatives, cont.)

Math 1210

Theorem 1. Using our limit laws and the definition of the derivative, we define the following additional rules on derivatives for functions $f(x)$ and $g(x)$, as well as real number c.

- $\frac{d}{d x}[c f(x)]=c \frac{d}{d x}[f(x)]$
- $\frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x}[f(x)] \pm \frac{d}{d x}(g(x))$

Challenge 2. The demand function for JM's desk lamps is given by

$$
p(x)=-0.1 x^{2}-0.4 x+35
$$

where x is the quantity of lamps demanded in thousands and $p(x)$ is the price of a lamp in dollars. What is $p^{\prime}(x)$? What is the rate of change of the unit price when the quantity demanded is 10,000 lamps $(x=10)$? What is the price of a lamp at that level of demand?

Challenge 3. Let $f(x)=x^{n}$ and $g(x)=x^{m}$. What is $\frac{d}{d x}[f(x) g(x)]$?

Definition 4. We define the product rule for derivatives to be

Challenge 5. Let $f(x)=\left(5 x^{2}+1\right)(2 \sqrt{x}-1)$. What is $f^{\prime}(x)$?

Challenge 6. Let $f(x)=x^{n}$ and $g(x)=x$. What is $\frac{d}{d x}[(f \circ g)(x)]$? What is $\frac{d}{d x}[(g \circ f)(x)]$?

Definition 7. We define the chain rule for derivatives to be

Challenge 8. Let $f(x)$ and $g(x)$ be differentiable functions. What is the derivative of $\frac{f(x)}{g(x)}=$ $f(x)[g(x)]^{-1}$? (Hint: Use the product rule and the chain rule.)

