Notesheet. Section 2.6 (Derivatives)

Math 1210

Definition 1. Let $f(x)$ be a function. We define the average rate of change of f from a to b by

Challenge 2. At time $t=0$, a car traveling in a straight line at $15 \mathrm{~m} / \mathrm{s}$ (roughly 34 mph) starts accelerating at $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ (roughly $11 \mathrm{mph} / \mathrm{s}$). The position of the car is modeled by

$$
x(t)=2.5 t^{2}+15 t
$$

What is the average rate of change of $x(t)$ from $t=1$ to $t=2$? What about the average rate of change of $x(t)$ from $t=1$ to $t=1.0001=(1+0.0001)$?

Definition 3. Given $f(x)$, we define the derivative of $f(x)$ at $x=a$ as Challenge 4. Let $f(x)=2.5 x^{2}+15 x$. Use the definition of the derivative to compute $f^{\prime}(1)$.

Challenge 5. Derivatives need not always exist. Does

$$
f(x)=|x|= \begin{cases}-x & x<0 \\ x & x \geq 0\end{cases}
$$

have a derivative at $x=0$?

Challenge 6. For a constant c, compute $\frac{d}{d x}(c)$. Does your answer make sense?

Challenge 7. Using the binomial theorem

$$
(x+h)^{n}=x^{n}+n\left(h x^{n-1}+\frac{n-1}{2} h^{2} x^{n-2}+\cdots \cdots+\frac{n-1}{2} h^{n-2} x^{2}+h^{n-1} x\right)+h^{n},
$$

compute the derivative for $f(x)=x^{n}$ where n is a positive integer.

Definition 8. We define the power rule for any real number n to be $\frac{d}{d x}\left(x^{n}\right)=$

