\qquad

Notesheet. Section 2.4 Part II

Math 1210

Challenge 1. Consider the function $f(x)=1+\frac{1}{x^{2}}$. What is $f(10)$? What is $f(100) ? f(10000)$? Is there a positive number N such that $f(N) \leq 1$?

Definition 2. We define the limit of $f(x)$ at infinity to be

Challenge 3. What is $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x^{2}}\right)$? What is $\lim _{x \rightarrow \infty} x$? What is $\lim _{x \rightarrow \infty} \frac{x+1}{4 x}$? Harder question, can you figure out $\lim _{x \rightarrow \infty} \frac{x^{2}+1}{5 x^{2}+3 x-1}$? (Note that "does not exist (DNE)" is a valid answer.)

Challenge 4. Let $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M \neq 0$ for some a (including $\infty,-\infty$). Let c be some number. Keeping the examples above in mind, what are the following limits equal to in terms of L, M, and $c ? \lim _{x \rightarrow a}(c \cdot f(x)), \lim _{x \rightarrow a}(f(x)+g(x)), \lim _{x \rightarrow a}(f(x) \cdot g(x))$, and $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$. Given a number $b>0$, what is $\lim _{x \rightarrow a}(f(x))^{b}$ assuming L^{b} is defined?

Challenge 5. The average cost per book in dollars incurred by TJ Publishing in printing x books is given by the average cost function

$$
\bar{C}(x)=4.5+\frac{3000}{x}
$$

Evaluate $\lim _{x \rightarrow \infty} \bar{C}(x)$ and interpret the meaning of this limit.

Definition 6. What is $\lim _{x \rightarrow 0} \frac{x}{x}$? What is $\lim _{x \rightarrow 0} \frac{x}{x^{2}}$? An indeterminate form is

Challenge 7. Evaluate $\lim _{x \rightarrow \infty} \frac{x}{1-x}, \lim _{x \rightarrow 5} \frac{x^{2}-4 x-5}{x-5}$, and $\lim _{h \rightarrow 0} \frac{(h+1)^{2}-1}{h}$.

