Notesheet. Section 2.4 Part II

Math 1210

Challenge 1. Consider the function $f(x) = 1 + \frac{1}{x^2}$. What is f(10)? What is f(100)? f(10000)? Is there a positive number N such that $f(N) \leq 1$?

Definition 2. We define the limit of f(x) at infinity to be

Challenge 3. What is $\lim_{x\to\infty} \left(1+\frac{1}{x^2}\right)$? What is $\lim_{x\to\infty} x$? What is $\lim_{x\to\infty} \frac{x+1}{4x}$? Harder question, can you figure out $\lim_{x\to\infty} \frac{x^2+1}{5x^2+3x-1}$? (Note that "does not exist (DNE)" is a valid answer.)

Challenge 4. Let $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M \neq 0$ for some a (including $\infty, -\infty$). Let c be some number. Keeping the examples above in mind, what are the following limits equal to in terms of L, M, and c? $\lim_{x\to a} (c \cdot f(x)), \lim_{x\to a} (f(x) + g(x)), \lim_{x\to a} (f(x) \cdot g(x)), \text{ and } \lim_{x\to a} \frac{f(x)}{g(x)}$. Given a number b > 0, what is $\lim_{x\to a} (f(x))^b$ assuming L^b is defined?

Challenge 5. The average cost per book in dollars incurred by TJ Publishing in printing x books is given by the average cost function

$$\overline{C}(x) = 4.5 + \frac{3000}{x}$$

Evaluate $\lim_{x\to\infty} \overline{C}(x)$ and interpret the meaning of this limit.

Definition 6. What is $\lim_{x\to 0} \frac{x}{x}$? What is $\lim_{x\to 0} \frac{x}{x^2}$? An <u>indeterminate form</u> is

Challenge 7. Evaluate $\lim_{x \to \infty} \frac{x}{1-x}$, $\lim_{x \to 5} \frac{x^2 - 4x - 5}{x-5}$, and $\lim_{h \to 0} \frac{(h+1)^2 - 1}{h}$.