\qquad

Notesheet. Section 2.4 Part I

Math 1210

Challenge 1. Consider the function $f(x)=\frac{x^{2}-1}{x+1}$. What is the domain of this function? What is $f\left(-\frac{9}{10}\right)$? What about $f\left(-\frac{99}{100}\right)$? Can you find an x such that $f(x)-(-2)=\frac{1}{10^{3}}$? (Hint: if necessary, use $99^{2}=9801$.).

Definition 2. We say the function f has the right-handed limit L as $x \rightarrow a$ from the right if

Challenge 3. Consider $f(x)=\frac{x^{2}-1}{x+1}$. What is $\lim _{x \rightarrow-1^{+}} f(x)$? Consider

$$
g(x)= \begin{cases}x^{3 / 2} & x \neq 4 \\ -1 & x=4\end{cases}
$$

What is $\lim _{x \rightarrow 4^{+}} g(x) ?$

Challenge 4. Consider

$$
f(x)= \begin{cases}-6 & -\infty<x<-3 \\ x & -3 \leq x \leq 3 \\ 6 & x>3\end{cases}
$$

What is $\lim _{x \rightarrow-3^{-}} f(x), \lim _{x \rightarrow-3^{+}} f(x), \lim _{x \rightarrow 3^{-}} f(x)$, and $\lim _{x \rightarrow 3^{+}} f(x)$?

Definition 5. We say the function f has the (two-sided) limit L as $x \rightarrow a$ if

Challenge 6. Consider

$$
f(x)= \begin{cases}-10 & x \leq-5 \\ x & -5<x<-2 \\ \frac{1}{x+1} & -2 \leq x<-1 \text { or }-1<x \leq 0 \\ x+1 & 0<x<5 \\ -2 & x=5 \\ x^{2} & x>5\end{cases}
$$

What are $\lim _{x \rightarrow-5} f(x), \lim _{x \rightarrow-2} f(x), \lim _{x \rightarrow-1} f(x), \lim _{x \rightarrow 0} f(x)$, and $\lim _{x \rightarrow 5} f(x)$? Note that "does not exist (DNE)" is an acceptable answer.

