Notesheet. Monomials and Power Laws

Math 1210

Definition 1. A monomial is

Challenge 2. Find $2^3 \cdot 2^2$. Write your final result as a power of 2. If $m, n \ge 0$, what is $x^m \cdot x^n$? What is $x \cdot x^m \cdot y^n$?

Definition 3. Given our example above, what must $x^m \cdot x^0$ be? We define x^0 to be

Challenge 4. Now, given what we have learned, what should $x^m \cdot x^{-m}$ be equal to?

Definition 5. If m is a natural number and x is a non-negative number, we define $x^{\frac{1}{m}}$ to be

Challenge 6. What is 15^2 ? What is $81^{\frac{1}{2}}$? What is $27^{\frac{1}{3}}$? What is $(7^2)^{\frac{1}{2}}$? Based on your answer, given a positive number x and positive integer m, what is $(x^m)^{\frac{1}{m}}$?

Definition 7. Given the above challenge, given a positive number x and rational numbers a, b, what must $(x^a)^b$ be equal to?

Challenge 8. What is $9^{\frac{3}{2}}$? What is $(x^4y^6)^5 \cdot (x^{-5}y^{-2})^3$?

Definition 9. The <u>distributive law</u> is

Challenge 10. Use the distributive law to expand $(x^2 + x^{-2})(x^2 + x^4)$.